PROBLEMS OF THE CONCENTRATION OF
JETS AND THEIR APPLICATION TO THE
LABYRINTH SEALS OF TURBOMACHINES

V. G. Orlik UDC 532.5.525

The potential outflow of an ideal incompressible liquid from a vessel through a slit formed by two flat
symmetrical walls with an arbitrary angle between them was investigated in detail by N, E. Zhukovskii, who
developed a method for the solution of a similar kind of problem [1].

Let us consider a plane potential jet of an ideal incompressible liquid, flowing toward the slit of two
symmetrical branches along the walls of a vessel (Fig. 1a). An analogous problem of a concentrated jet,
flowing toward a slit along a bisectorial plane at an angle formed by the walls (Fig, 1b) was discussed in {1],
but its solution was not brought down to a numerical result,

We introduce the notation: v, velocity of the liquid at any given point of the jet; V, W, velocity of the
liquid at the free boundary of the jet ahead of and behind the slit; ¢ = In(W/A); 45 = In(W/V); 6, angle be-
tween the velocity and the x axis; 260;, angle between the walls of the vessel forming the slit; 2b, width of
the slit; 2Q, total mass flow rate of the liquid in the jet; ¢, potential of the velocities; i, stream function,

To seek the equation of the contour of the outflowing jet we use the well-known dependence
dy =+ sin Odgp. N
In accordance with the method of [1], we introduce the complex variable
u =r(cos & - i sin A) @)
and two auxiliary functions of it

x(w) =@+ ip = %—luir—;_,—f- — Q.

fdu \ (3)
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so chosen that, with real values of u, the variables ¢, 4, and 9 correspond to the boundaries of the flow un-
der consideration (q, 8, and c < f are real numbers) and so that, at the free boundary of the jet COC' in-

- side the vessel y = 0, and, at its walls and at the external boundaries of the jet outside the vessel y= +Q,
In addition, at the free boundaries of the jet under these circumstances the constancy of the velocity is as-
sumed (& = const) and, at the walls, the angle (6= const). Denoting

c=kf, V1 —ky =Fk.u=cu, (4)
we transform the expression for &(u)

] 7

du’
= iqj‘ - = + o'g.
° V(i -—-u’z) (1 —Fh ’ (5)

D (v)

Here, as in [1], we set w' equal to the total elliptical integral with the modulus k'.
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Comparing (3) and (5), and bearing in mind that, in the section OC of the contour of the jet, v= V and
4 = #¢ = const, we obtain

B, =In (W'V) = &'¢. le., 1 = Wexp(—o'g. - 6)
The upper integration limit in expression (5) is the elliptical sine of the value of the integral

g . g)'q — 1t .\
g — i e 1,
w Sn(q ' 7 ,)

Taking account of (4) and bearing in mind the relationship u= rcos A for the boundaries of the flow, it can
be shown that, in the section OC, where 0 < r < ¢ and (6) is valid,

r'c = sn (B/g).

The value of ¢ varies within the limits 0 < 9 < 6y, and 4, is found equal to

1

o — qS du’ — go
0= T = 0,
5 ]/ (1 . u,-z) (1 = keul') (7

where w is the total elliptical integral with the modulus k.,

In the section CF of the wall of the vessel, where ¢ < r < f, the angle of the flow remains constant
{6 = gy = qw), and the real part of the function &(u) becomes a variable., This corresponds to a change in the
velocity v within the limits V < v < W, and of the variable 4 from w'q to 0.

In the section Fx of the contour of the jet, after it has issued from the slit v = W, and the angle 9
varies within the limits 6, > 6 > 0. In this case, r > f and it can be shown, as in [1], that, in this section

1

Il a I
g g ¢ ksn% (8)

To find the coefficient of the constriction of the jet with its outflow from the slit, we must write an
equation for its contour y(x). This can be done, having expression (1) for dy, in which the potential of the
velocity ¢ must be determined. We write an expression for ¢, comparing (2), (3), and (8),

dn —
Q, °¢y
¢=27 In—7y.

ﬁksn—q—

(9)

Here the symbol dn denotes an elliptical "delta-amplitude® function. Taking account of (9), expression (1}
has the form

an

2Q q .
dy = — =% ———= — sin 6d8,
YW ogn 8.l ’
q q

and the equation of the contour of the jet at its outlet from the slit

9
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The coefficient of the constriction of the jet u is the ratio of its width 2y with a sufficiently great
distance from the slit (6 = 0) to the width of the slit 2b
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At the same time Q = y;bW, Then

from which

8a
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)
q q ;

\ rt (10)
For the problem of Fig. 1b, considered in [1], the coefficient of the constriction of the jet is equal to
2 Benlnl -1
Uy == 17“';&'(—1-9—-'—’-51116&9 .
0 5[1-{1— (11)

We transform expressions (10), (11) to a form convenient for computer computations,

To this end, we use
the well-known expansions

9 9
en - g sin 20
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Taking account of (6), (7), and the obvious (—1)™ = cosnr, this gives

: O -1
W= ('1 - —ei—j.c'tg —:% sin 040 + Sl) ; (12)
BN L4 ““o )
’ 8 .
y = ( 1 -J—Ljnct 9 sin 040 + 8,)
Ha ==, -, ‘ggou i 2) ’ (13)
. 0
where
o, i 6 nx -1 0. \27-t
~ 4 sin WA ! -
8 = ;:1 —~ [(7) - cos nn] [1 — (;—;—) ] ,
~ - (14
. nx 1
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Sy = - na [('V_) - 1} [1 - (ﬁ) ] :

Before giving the resulis of the computations, we note that, with V = 0, expressions (12), (13), in view of

S; = Sy = 0, go over into that obtained in [1], especially for the case of outflow from the same vessel without
an initial velocity ‘

8o -1
R a0
== (ITEBYCth L,lnede) N
which, for a vessel with a slit in its flat bottom (g, = 7/2), gives

w = n/(w 4 2) = 0.611.

Taking into consideration that the result of summation in formula (14) for S, is positive, while for S, itis
negative, we find that in the case under consideration (see Fig. 1a) the coefficient of constriction of the jet
is less, and, in the case considered in [1] (See Fig. 1b), greater than with outflow without an initial velocity.

568



Fig. 1

TABLE 1
] 3 v Values of angle g,
b~ I 0 22°30° 5o | e300 | 900 [ta2o30| 135° [157°307] 180°
0,00 1,000 0,853 0,747 0,669 |0,61110,568 | 0,538 ) 0,515 | 0,500
0,10 1,000 0,853 0,747 0,667 | 0,605 0,553 [ 0,510 | 0,475 | 0,450
0,20 1,000 0,853 0,746 0,660 |0,585]0,520 ! 0,468 | 0,427 | 0,400
= 0,30 1,000 0,853 0,742 0,643 |0,552 0,475 0,417 | 0,375 | 0,350
- 0,40 1,000 0,853 0,733 0,613 {0,505 0,421 10,361 | 0,322 | 0,300
00 0,50 1,000 0,852 0,712 0,566 | 0,444 ] 0,358 10,302 { 0,267 | 0,250
i 0,60 1,000 0,847 0,671 0,497 {0,371 0,290 1 0,241 | 0,243 | 0,200
2 0,70 1,000 0,831 0,598 0,405 10,287 {0,249 { 0,180 | 0,159 | 0,150
3 0,80 1,000 0,782 0,476 0,290 |0,195 0,146 { 0,419 | 0,105 | 0,400
~ 0,90 1,000 0,623 0,284 0,154 10,099 0,073 ] 0,059 | 0,052 | 0,050
'"‘:é 0,95 1,000 0,428 0,156 0,079 | 0,050 ;0,036 | 0,029 { 0,026 | 0,025
z 0,99 1,000 0,139 0,034 0,016 | 0,010 ] 0,007 | 0,006 | 0,005 | 0,005
por 1,00 1,000 0,000 0,000 0,000 | 0,000 {0,000 0,000 0,000 0,000
0,00 1,000 0,853 0,747 0,669 0,611 0,568 0,538 | 0,515 | 0,500
= 0,10 1,000 0,853 0,747 0,670 0,617 | 0,584} 0,562 | 0,554 | 0,550
"': 0,20 1,000 0,853 0,748 0,677 |0,636 0,645 10,602 | 0,600 { 0,600
o0 0,30 1,000 0,853 0,754 0,693 |0,666 | 0,656 | 0,650 | 0,650 | 0,650
B 0,40 1,000 0,853 0,760 0,719 {0,705 ] 0,702 { 0,700 | 0,700 | 0,700
& 0,50 1,000 0,854 0,779 0,756 | 0,751 {0,750 ] 0,750 } 0,750 | 0,750
2 0,60 1,000 0,859 0,809 0,801 {0,800 0,800 | 0,800 | 0,800 { 0,800
=] 0,70 1,000 0,872 0,851 0,850 {0,850 0,850 { 0,850 | 0,850 ] 0,850
b= 0,80 1.000 0,903 0,900 0,900 {0,900 ({ 0,900 { 0,900 { 0,900 { 0,900
g1 0% 1,000 | 0,950 | 0,950 | 0,550 |0,950 0,950 | 0,950 | 0,950 | 0,950
g} 1,00 1,000 1,000 1,000 1,000 {1,000} 1.000 | 1,000 | 1,000 ) 1,000
2
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In the other limiting case where V = W we obtain yuq = 0. The value of pu, in this case is not imme-
diately evident, and only computations show that u, = 1.

The results of computations using a Nairi-2 digital computer are given in Table 1, where they are
shown in the form of a function of the half-angle between the walls 6, and the ratio of the initial to the final
velocities V/W. The computations showed that an increase in the initial velocity has a different effect on
the coefficient of constriction with different schemes of the concentration of the jets. In the case of a jet
near the wall, ahead of the slit an increase in its velocity considerably decreases the cross section of the
outflowing stream, by the same token limiting its mass flow rate (with V —W, in view of u; — 0, there is
something like self-plugging). In the case of a central jet, ahead of the slit an increase in its velocity in-
creases the cross section of the outflowing stream and promotes an increase in its mass flow rate,

From Table 1 it also follows that, with an increase in the initial velocity along the walls (see Fig. 1a),
the effect of the angle between them on the coefficient of constriction of the jet is mainly reinforced, while,
with an increase in the veloicty along the bisectorial plane (see Fig. 1b), the effect of the angle between the
walls is weakened.

As is well known [2, 3], with outflow through a Borda mouthpiece (g = v) the coefficient of constriction
can also be found without using functions of a complex variable. If we use the Bernoulli equation and the
equation of the momentum of the liquid for the volume of the jet before and after the mouthpiece, at a suffi-
cient distance from the mouthpiece in both cases illustrated in Fig. 2a, b (in the cases of countercurrent and
cocurrent flow, respectively), and, in this case, if it is taken into consideration that the cross section of half
the jet following the mouthpiece at a sufficient distance from it is equal to ub and, ahead of the mouthpiece,
to ubW/V, then, we can obtain the values of the coefficients of constriction

uy = (4 — VIW)/2, p, = (4 + VIW)2.

It can be shown that these expressions are valid also if the mass flow rate of the liquid in the oncom~
ing jet is greater than in the jet flowing out through the mouthpiece and, in particular, with an infinite width
of the oncoming flow. The latter coincides with the case of outflow info a tube from a continuous stream in
a channel of infinite width 4], for which an identical solution has been obtained,

One region of the practical use of the results obtained is the analysis of the flow of a medium in the
labyrinth seals of turbomachines.

Figure 3 shows schemes of the flow in different types of seals, involving problems of the concentration
of jets. The problem discussed by N, E. Zhukovskii is realized in a direct-flow seal (Fig. 3a). The problem
solved by the present author is realized in stepped seals (g, ~ 90°, Fig. 3b, c), as well as in seals of the
Keller type, withanoverlap closetozero (§, ~ 180°, Fig. 3d). Thetheoreticalresults obtained above explain
‘earlier-noted paradoxical experimental data [5, 6], according to which the coefficient of the mass flow rate
of a multichamber stepped seal (0.3-0.5) is less than for a single slit (= 0.611). In addition, an explanation
has been found for the surprisingly high efficiency of a seal of the Keller type near zero overlap [7]. Both
of the above-noted phenomena are explained by the fact that, in distinction from single slits, where the out-

" flow, as a rule, takes place without an initial velocity, in multichamber seals, as a result of the incomplete
damping of the velocity ahead of the inlet to each succeeding slit, there is flooding of the jet, increasing the
through flow in direct-flow seals, and decreasing it in stepped seals, particularly with a rotation by 180°
(Keller seal).

The use of calculated values of the coefficients of constriction of jets offers the possibility of refining
considerably the calculation of labyrinth seals in the heat-transfer section, of determining the through flow,
of finding the conditions for stabilization of the flow, and the distribution of the pressures along the labyrinth
and around the periphery of the rotor, carrying the seal.

The adopted model of flow in a seal in the form of a flooded jet with stagnant zones is in good coinci-
dence with experiment on the value of the through flow [8], although visualization shows the presence of vor-
texes [7, 9], and further refinement can be afforded by the use of models with different types of vorticity in

the breakaway zones [10],

The author expresses his thanks for the consultations of his co-workers in the Central Committee of
Heavy Industry (TsKTI), Yu. N. Malyshev and O. A. Kudryavtsev.
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INTERACTION OF HYPERSONIC MULTIPHASE FLOWS

V. 1. Blagosklonov, V. M, Kuznetsov, UDC 533.6,071,08,632.57
A, N, Minailos, A. L, Stasenko,
and V, F. Chekhovskii

The investigations of multiphase flows, pursued vigorously in recent years, stem from the practical
importance of problems such as supersonic combustion, erosion of materials exposed to flow, various prob-
lems of chemical technology, etc.. These flows are also of great interest from the viewpoint of building high-
enthalpy gasdynamic facilities [1], which would, in principle, offer modeling of the most important flight pa~
rameters of hypersonic vehicles, The basic gasdynamic problem in these areas is to arrange the process of
mixing a group of solid (or liquid) particles, accelerated by a light gas, with the supersonic quasiauxiliary
flow in which one can excite internal, particularly vibrational, degrees of freedom. The solution of the com-
plete problem can be divided into a number of stages. The first problem is to accelerate solid particles to
hypersonic speeds. When the mass ratios of the accelerating and accelerated components are close, the light-
gas temperature must be low enough so that the vapors formed in the acceleration (in the case where the par-
ticles may vaporize) should not harm the carrier properties of the light gas. It is important to achieve max-
imum velocities of the solid particles and uniform distribution across the accelerating nozzle, The second
task is to examine the mixing process with a view to minimizing perturbation associated with percolation of
the particles, their dynamic -motion and possible vaporization., Nonuniformities can arise in the flow from
several causes: shock waves of various strengths, turbulent fluctuations, etc. To minimize perturbations
one must, firstly, so choose the parameters of the interacting gas components and their encounter angle, so
that a shock wave does not arise in one of the flows, which may be, e.g., air (Fig, 1). Such a shock wave,
however, may be formed for another reason: Because of penetration and vaporization of particles additional
perturbations arise, associated with the supply of mass, momentum and energy. Here the macroscopic pa-
rameters vary in the mixture, When one cannot achieve conditions for quasiauxiliary flow (i.e., the flow
velocity of the gas into which the particles are introduced equal to the tangential component of the particle
velocity), additional acceleration of the particles occurs in a certain layer, accompanied by dissipative irre~
versible processes. There may also be rapid relaxation of vibrational energy in the layer; in addition, the
layer may be a source of additional wavelike perturbations.

Thus, both the acceleration of particles, and analysis of the processes occurring inside the zone where
the particles mix with the gas stream, are important and independent tasks. We shall examine them in suc~
cession, It is known that one can obtain aerosols by using the phenomenon of condensation in a supersonic
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